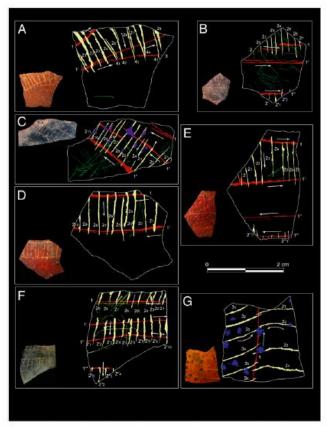
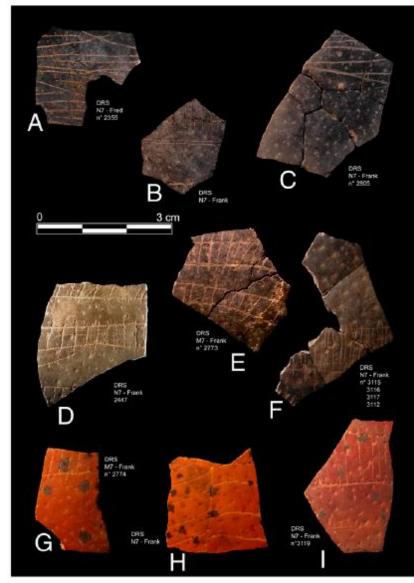


Centre for Coastal Palaeoscience

The relevance of palaeoscience along the southern Cape coast: **Point of Human Origins**

> Dr Alastair J. Potts Botany Department www.pottsresearch.org.za





Decorated Ostrich Eggshell Egg Containers at: 65,000 years ago

From: Pierre Jean Texier, Guillaume Porraz, John Parkington, Jean Philippe Rigaud, Cedric Poggenpoel, Christopher Miller, Chantal Tribolo, Caroline Cartwright, Aude Coudenneau, Richard Klein, Teresa Steele, and Christine Verna. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. PNAS 107 (14):6180-6185, 2010.

Engraved Ochre at Various Sites ~ 70-60 ka

Klein Kliphuis Cave 5mm

Fig. 5. The scored face of the ochre.

Blombos Cave

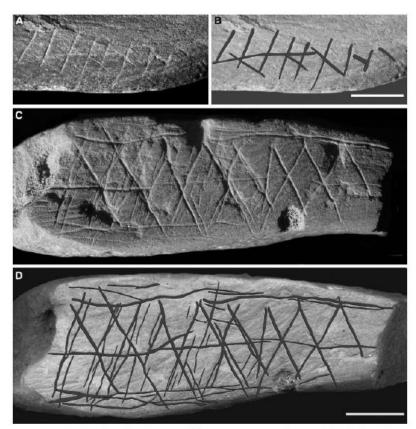


Fig. 2. Engraved ochres from Blombos Cave. (A) SAM-AA 8937 is a flat piece of shale-like ochre that grades into silt on the reverse side: weight = 39.2 g; maximum length = 53.6 mm; breadth = 42.6 mm, depth = 11.7 mm; streak color notation 3060 Y65R (33). (B) Tracing of lines verified as engraved by study under magnification (scale bar, 5 mm). (C) SAM-AA 8938 is a rectangular slab of ochreous shale: weight = 116.6 g; maximum length = 75.8 mm; breadth = 34.8 mm; depth = 24.7 mm; streak color notation 4050 Y60R (30). Oblique lighting of specimen accentuates both engraved lines and irregularities of the surface, some created by grinding before the engraving and others by the process of engraving. (D) Tracing of lines verified as engraved by study under magnification, superimposed on flat-bed scan of engraved surface (scale bar, 10 mm).

Shell Beads 80-70 ka in North and South Africa

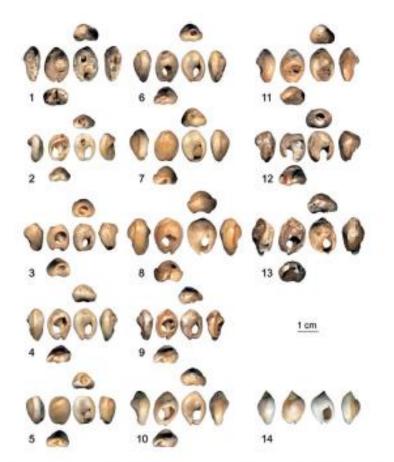


Fig. 3. Five aspects of the N. glbbosulus shells (nos. 1–13) from the Middle Paleolithic layers of the Grotte des Pigeons, Morocco, and a modern specimen (no. 14) of the same species from Djerba, Tunisia. Contextual and analytical data are provided in Table 1.

Fig. 1. Perforated N. kraussianus beads from the Middle Stone Age of Blombos Cave. Scale bars, 5 mm.

Grottes des Pigeons

Blombos Cave

A 100,000-Year-Old Ochre-Processing Workshop at Blombos Cave, South Africa

Christopher S. Henshilwood,^{1,2}* Francesco d'Errico,^{3,1} Karen L. van Niekerk,¹ Yvan Coquinot,⁴ Zenobia Jacobs,⁵ Stein-Erik Lauritzen,⁶ Michel Menu,⁴ Renata García-Moreno³

www.sciencemag.org SCIENCE VOL 334 14 OCTOBER 2011

Ochre and the Sea Come Together

Fig. 1. Ochre-processing toolkits in situ showing Tk1 (A) and Tk2 (B). [Images: G. Moéll Pedersen]

Symbolic Behavior in "Sea-Shell" Collecting ~ 110,000 years ago

Glycymeris connollyi (Dog Cockel)

~165,000 years ago LETTERS

Early human use of marine resources and pigment in South Africa during the Middle Pleistocene

Curtis W. Marean¹, Miryam Bar-Matthews³, Jocelyn Bernatchez², Erich Fisher⁴, Paul Goldberg⁵, Andy I. R. Herries⁶, Zenobia Jacobs⁷, Antonieta Jerardino⁸, Panagiotis Karkanas⁹, Tom Minichillo¹⁰, Peter J. Nilssen¹¹, Erin Thompson¹, Ian Watts¹² & Hope M. Williams²

Alikreukal (*Turbo sarmaticus*)

Whale Barnacle Indicates Scavenging of Whale Skin and Blubber

Brown mussel (*Perna Perna*)

Fire As an Engineering Tool of Early Modern Humans

Kyle S. Brown,^{1,2} Curtis W. Marean,² Andy I. R. Herries,^{3,4} Zenobia Jacobs,⁵ Chantal Tribolo,⁶ David Braun,¹ David L. Roberts,⁷ Michael C. Meyer,⁵ Jocelyn Bernatchez²

"Earliest evidence" list from the southern Cape coast

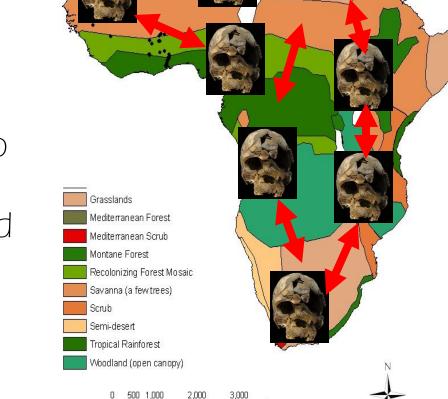
YBP	Activity	
165,000	Earliest use of marine resourcesEarliest evidence of heat-treatment of stone tools	
162,000		
110,000		
100,000		
75,000	Earliest evidence of shell decorations (necklaces)	
65,000	Earliest evidence of art	

Appearance of Use of Differing Inter-Tidal Zones

Age ka	Upper Balanoid Low neap tide	Lower Balanoid Low spring tide	Cochlear Very Low spring tide
70-50	Klasies PP5-6 Klasies Blombos	Klasies Klasies Blombos	Klasies Klasies
90-70	Klasies Blombos PP5-6 Klasies Blombos	Klasies Blombos Blombos	Blombos Blombos
120-90	Klasies PP13B PP9 PP13B PP9	Klasies	
125-120	PP13B PP9 PP9		
170-160	PP13B GO	CAUTION	DANGER

Appearance of Use of Differing Inter-Tidal Zones

Age ka	Upper Balanoid Low neap tide	Lower Balanoid Low spring tide	Cochlear Very Low spring tide
70-50	Klasies PP5-6 Klasies Blombos	Klasies Klasies Blombos	Klasies Klasies
90-70	Klasies Blombos PP5-6 Klasies Blombos	Klasies Blombos Blombos	Blombos Blombos
120-70	RIASIES PP13B PP9 PP13B PP9	KIdsies	
125-120	PP13B PP9 PP9		
170-160	PP13B GO	CAUTION	DANGER

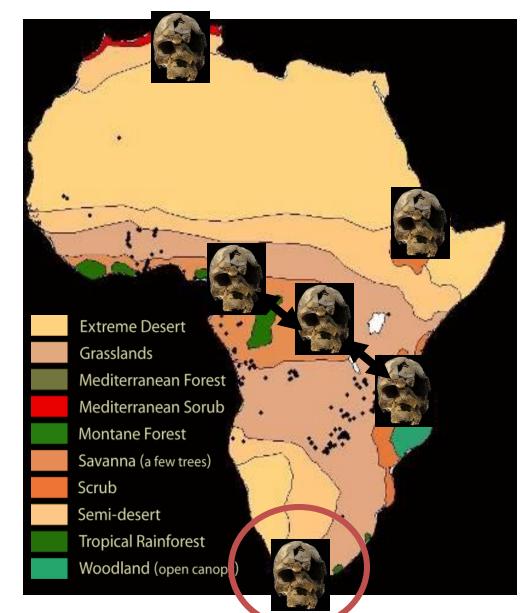


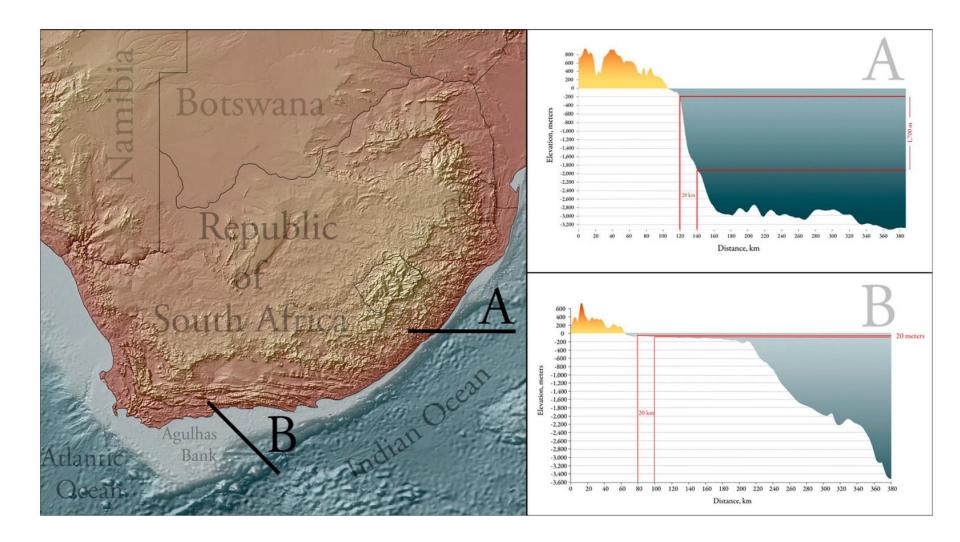
Where did this occur? (Why here?)

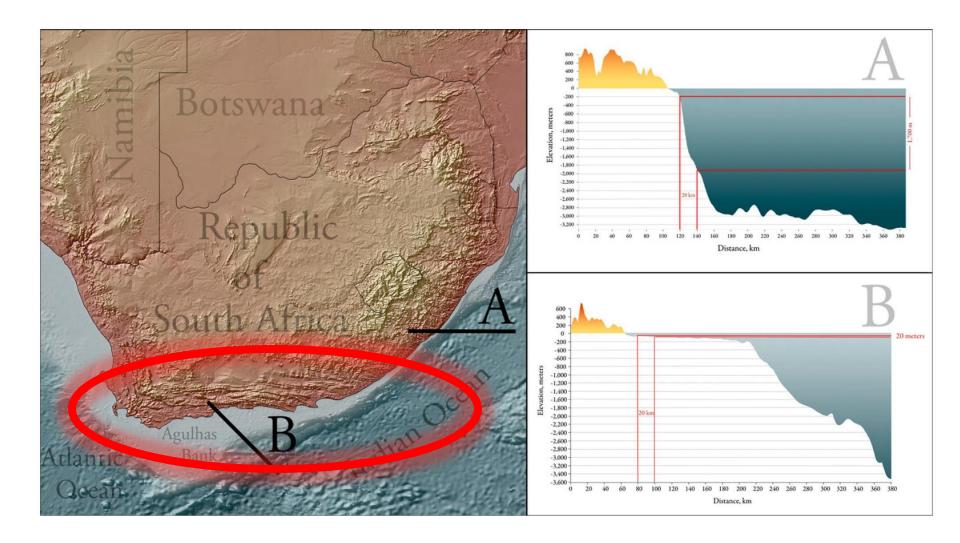
Inter-Glacial Africa 230-195 ka

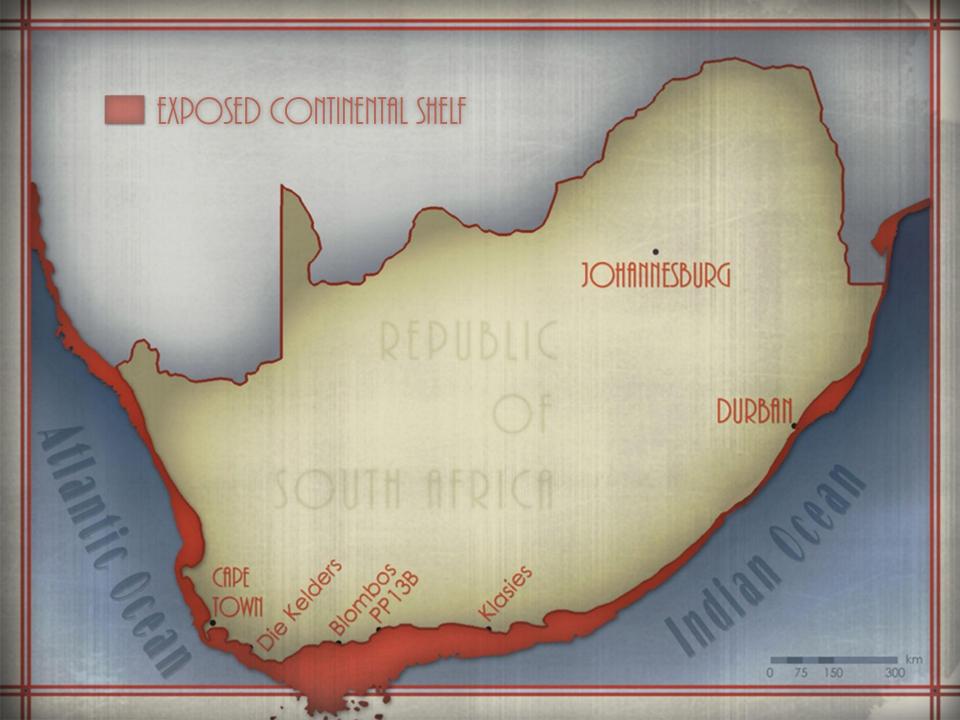
- Continent is warm and wet
- Well vegetated
- Few natural boundaries
- Populated by a pan-African near or fully Homo sapiens = Herto and Omo
- Gene flow widespread

Kilometers


500 1,000


Map redrawn from Adams, J.M. Global land environments since the last interglacial. http://www.esd.ornl.gov/ern/gen/nerc.html


Glacial Africa 195 - 123 ka


- Continent is cool and dry
- Poorly vegetated, widespread deserts
- Many natural boundaries
- Gene flow is cut
- Lineages diverge
- 4 6 potential progenitor lineages

Map redrawn from Adams, J.M. Global land environments since the last interglacial. http://www.esd.ornl.gov/ern/qen/nerc.html

Full Interglacial

Neo-Coastal Plain

Pinnacle Point

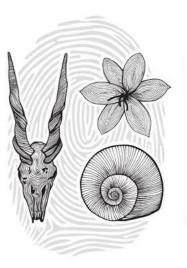
- Exposed Continental Shelf - 100 km from Pinnacle Point -

- Exposed Continental Shelf - 100 km from Pinnacle Point -

Quartzite Mountains

Quartzite Mountains

Full Glacial


eo-Coastal Plain

Pinnacle Point

The major aims of the CCP:

- To reconstruct the environment of the Palaeo-Agulhas Plain
 - Palaeoclimate modelling (with the CSIR)
 - Vegetation modelling
 - Palaeoclimate reconstruction from palaeoarchives
- To contextualise the landscape of the archaeological record

Centre for Coastal Palaeoscience

